Hawaii’s Clean Energy Challenges

HEPF
May 27, 2016
by
Rick Rocheleau
Hawaii Natural Energy Institute
School of Ocean and Earth Science and Technology
University of Hawaii at Manoa
The RPS Challenge

- "Near" future Oahu renewables estimate
 - 125 MW Wind ~383 GWh (4.9%)
 - 375 MW DPV ~591 GWh (7.6%)
 - 152 MW CPV ~293 GWh (3.8%)
 - 69 MW Waste ~ 390 GWh (5.2%)
 - 120 MW Biofuel ~ 36 GWh (0.5%)
 - Total Renewable ~1693 GWh (~21.8%)

- Oahu (72% of state total) currently gets ~ 11% from wind and solar. Optimistic penetration by 2017 around 15% from wind and solar.

- Options to 100% include
 - Significant growth of wind and solar (Oahu or “offshore”)
 - Biomass and biofuels
 - Geothermal with cable
 - Still emerging technology (wave, OTEC, ?)

- Potential pathway to 100% renewable:
 - Assume we find 30% firm, “dispatchable renewables” e.g biomass, biofuel, geothermal, OTEC
 - Grow balance from solar and wind (numbers below based on available energy)
 - High solar: 2,800 MW additional solar (10 -50 sqmi)
 - High wind: 1,600 MW additional wind: 800 – 2MW turbines, (~60 sqmi)
 - Mixed W&S: 1,540 MW additional solar, 960 MW additional wind
Curtailment at High Penetrations (Oahu)

- Incremental (marginal) curtailment increases significantly at high penetration
- Complex curtailment (hourly and daily) requires flexible mitigation measures
Integration with Electric Transportation

• Potential pathway to 100% renewable electricity plus 40% ground transportation:
 • Assume 30% electric from firm, “dispatchable renewables”

• EV (@ 100 miles/24kwh)
 • High solar: 3760 MW additional solar
 • High wind: 2100 MW additional wind: 1000 – 2MW turbines

• H2 by electrolysis (@2.5x efficiency of current vehicle fleet)
 • High solar: 5530MW additional solar
 • High wind: 3160 MW additional wind (1500 – 2MW turbines)
Closing Comments

- Moving beyond 30-40% will require very creative system integration and new innovations (curtailment, reliability, stability)

- Required renewable energy development is immense and generally underestimated: land use/siting; community impact; community acceptance, multibillion dollar investment

- Optimal path forward is dependent on future costs of renewables and mitigation measures – many rosy predictions, lots of uncertainty.

- Current obsession with low-cost pathway to 100% is distracting from work needed to increase renewables usage using ‘real’ costs.

 - Can the community come together with a definitive plan to double what we have today
MAHALO

For more information, contact:

Rick Rocheleau
Hawaii Natural Energy Institute
1680 East-West Road, POST 109
Honolulu, Hawaii 96822

Office: (808) 956-8346
Mobile: (808) 389-9944
E-mail: rochelea@hawaii.edu
Website: www.hnei.hawaii.edu
- Quantify impact of new energy systems on production cost and curtailment
 - Different resource mixes (wind, central and distr PV, other)
 - Alternative fuels (LNG, hydrogen, biofuels)
 - Grid configuration (independent or connected)
 - Changes due to load and load-profiles (end-use efficiency, alt transportation)
- Analyze reliability and stability – quantify additional mitigations
- Identify and quantify mitigation methods to address curtailment, reliability and stability
 - Advanced controls, unit cycling, reduced minimum run, improved forecasting
 - Energy storage, smart grids, advanced inverter technology, microgrids, demand response, integration with transportation
- Evaluate cost - grid changes, mitigations, transmission and distribution upgrades